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ABSTRACT

The Best Replacement Factor (BRF) is used primarily in Coordinated Ship-

board Allowance List (COSAL) and load list requirements determination. Re-

cently, many inventory problems including stock shortages, stock excesses, and

churn have been blamed on the BRF. To identify what problems are associated

with the current method used to compute the BRF, we took a multi-faceted ap-

proach. First, we discussed the two forecasting methods available under Re-

systemization and then analyzed the volatility and trend of the current BRF.

Casualty Report (CASREP) items and problem equipments were included in the

analysis. We then examined alternative methods to forecast the BRF and com-

pared them with the current methods. The best alternative was selected based

on its performance in terms of stability, accuracy with respect to bias and

extremes, and the magnitude of errors. Performance was evaluated separately

for items identified as readiness contributors. Test COSALs were built with

the current BRFs and the proposed BRFs to evaluate the impact of the change.

We recommend using the exponential probability distribution to adjust the

Technical Replacement Factor (TRF) during the development period, and after

the development period, exponential smoothing with a data windsorizing system

to handle extreme values. - ..
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EXECUTIVE SUMMARY

1. Background. The Best Replacement Factor (BRF) is used primarily in Coor-

dinated Shipboard Allowance List (COSAL) and load list requirements determina-

tion. Recently, many inventory problems including stock shortages, stock ex-

cesses, and churn have been blamed on the BRF.

2. Objective. To identify and investigate problems associated with the cur-

rent method used to compute the BRF. After these problems have been identi-

fied and investigated, develop alternatives to improve the BRF forecast.

3. Approach. The first phase began with an analytical discussion of Exponen-

tial Smoothing and the Ratio Method (the two methods available under Resys-

temization). Next, we measured current BRF volatility over time by examining

BRF changes and trends. Casualty Report (CASREP) requisitions were then ana-

lyzed. From the analysis of CASREP items, we identified and examined items

that appeared to have major support problems. Finally we examined a single

weapon system (PHALANX) in an attempt to identify specific BRF problems.

Taking the information gained in the first phase, we developed forecast

methods to correct/improve the BRF. These new methods, as well as the current

methods, were ranked based on their performance with respect to all items and

readiness contributors. Performance was related to stability, accuracy with

respect to bias and extremes, and magnitude of the errors. To evaluate the

impact of any change, we compared the best method to the Benchmark (current

forecast method) COSAL computed with Modified Fleet Logistics Support Improve-

ment Program (MOD-FLSIP) rules.

4. Findings. BRF instability and trend are primarily related to the subjec-

tive portion of the forecast (Technical Replacement Forecasts (TRFs), ordnance

freeze, manual changes and overrides). Eliminating the TRF, ordnance freeze,
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manual changes and overrides from the forecast produced more stable forecasts

that trended closer to the actual Navy Maintenance and Material Management

(3M) average usage rates computed from all available data.

Using the exponential probability distribution to adjust the TRF during

the development period, and exponential smoothing, with a data windsorizing

system to handle extreme values after the development period, provided the

best forecast with respect to stability, bias and extremes, and the magnitude

of the errors. These results were consistent for all items and the subset of

items classified as the readiness contributors.

The proposed method appears to slightly reduce COSAL range and effective-

ness. However, we believe the improved stability and accuracy will provide

long term benefits in reduced COSAL churn which tends to create long supply

and/or outfitting deficiencies.

5. Recommendation. We recommend using the exponential probability distribu-

tion to adjust the TRF during the development period. After the development

period, use exponential smoothing with a data windsorizing system to handle

extreme values.
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I. INTRODUCTION

The Best Replacement Factor (BRF) is used primarily in Coordinated Ship-

board Allowance List (COSAL) and load list requirements determination. Re-

cently, many inventory problems, including stock shortages, stock excesses,

and churn have been blamed on the BRF. Some concerns are unrelated to the

method used to compute the BRF. Poor reporting by activities, bad configura-

tion data, and manual changes can lead to distorted forecasts. Other concerns

are related directly to the current method used to compute the BRF. It has

been suggested that using different data sources when Navy Maintenance and

Material Management (3M) data is unavailable and using the current forecast

method (Exponential Smoothing with a weight of .4) which reacts quickly to

changes, create an unstable forecast.

This concern has grown since Readiness Based Sparing (RBS) models were

approved for use in conjunction with the COSAL Modified Fleet Logistics Sup-

port Improvement Program (MOD-FLSIP) model. Under MOD-FLSIP rules, an item's

requirements are based only on its expected demand (BRF times Lie item's acti-

vity population). Changes in an item's BRF only affect that item's require-

ments. With an RBS model, requiremen. are deLermined bascd on the rellt ive

demands and prices of all items being optimized; i.e., items compete against

each other based on their expected demand and cost. A change in one item's

BRF can affect not only its own requirements but those of other items as well

As a result, the Ratio Method was proposed as a more stable alternative for

Resystemization. The Ra'io Method is the ratio of the cumulative 3M usage to

the cumulative 3M population. This method is not yet approved for use, nor

has it been shown to provide more cost-effective results.

Therefore, our initial phas, of this study was to determine if any of

these concerns are valid. After identifying and analyzing problems associated



with the present BRF, we then propose and evaluate methods to correct/improve

the forecast.

II. APPROACH

In this section, we describe the method, data and performance measurements

used in our analysis

A. METHOD.

We begin the first phase with an analytical comparison of Exponential

Smoothing and the Ratio Method, the two methods available under Resystemiza-

tion. Next, we measure BRF volatility over time by examining BRF changes and

trends. CASREP items are analyzed to identify and examine problem items. Fi-

nally, we analyze items on a sample problem equipment (PHALANX) in an attempt

to identify specific BRF problems. Throughout the data analysis, we include

an analytical discussion comparing what we observed with the theory.

Using the information gained in the first phase, forecast methods are de-

veloped to improve the BRF. These methods are ranked based on their perform-

ance with respect to all items and only those items identified as readiness

contributors. Performance for items on two selected equipments is also ana-

lyzed. To measure the impact of any changes, the best method is compared to

the benchmark COSAL (computed with the current forecast method and with MOD-

FLSIP rules) for several test ships.

B. DATA.

The Naval Sea Logistics Center (NSLC) provided us with their 10 year

BRF history file (1978-1987) and Casualty Report (CASREP) requisitions for the

period I January 1986 to 31 December 1987. The 10 year history file contains

the BRF and item demand and average population for 3M, Mobile Logistics Sup-

port Force (MLSF), and system data. We obtained PHALANX data from CACI.
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These data were used to analyze potential BRF problems. The KRF history filh.

was also used to compute BRFs using alternative procedures.

To measure the impact of any BRF change, Navy Ships Parts Control Center

(SPCC) provided us with candidate files from the July 1988 COSAI. extract for

the following ships:

" CC 24- USS REEVES
* DDG 6 - USS BARNEY

* DDG 16 - USS STRAUSS

* DDG 993 - USS SPRUANCE

* FFG 13 - USS SPRAGUE

* LPD 14 - USS TRENTON

NSLC provided us with 3M demand data from 1 August 1988 to 10 Novtmbcr 1988 to

evaluate the test COSALs. NSLC also provided Weapon System File (WSF) ex-

tracts for two equipments; the PHALANX (Allowance Parts List (APL) number

006090052) and an engine (APL number L665360264). These data were used to

more closely evaluate BRFs on sample equipments. To determine the impact on

readiness, NSLC provided a list of Federal Supply Classifications (FSCs) to

define which items they considered potential readiness contributors.

C. PERFORMANCE MEASURES.

Model range and requisition effectiveness, in conjunction with co,t,

was used to measure the impact on the COSAL. Model range effectiveness is the

percent of COSAL candidate items with demand that was stocked by MOD-FI.SIP.

Model requisition effectiveness is the percent of requisitions for COSAL can-

didate items that was satisfied using the COSAL quantity.

BRF forecast performance was ranked based on stability, aiccuracv with res-

pect to bias and extremes, and accuracy with respect to the mgnitude of the

forecast errors. The criteria used to rate the forecast methods is varied and

at times contradictory. That is, the forecast method selected may or may not
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be the most stable or accurate, but it will provide the best combination of

stability and accuracy given the alternative methods. It is important to note

that all the measures look in hindsight to see how the yearly BRFs compare to

the average 3M rate over time. The average BRF is based on 5-10 years data

depending on the history available for the item.

The following paragraphs explain the forecast performance measures in de-

tail.

1. Stability. We measured stability in terms of the number of times

(years) the forecast is within 95% confidence limits of the average item 3M

usage rate (computed from the 10 year history file). The more stable a fore-

casting method is, the more often its forecast will be within these limits.

UL = X + t { 7]

LL - X -t (fiR

where

UL - the upper confidence limit

LL - the lower confidence limit N

h1X - the average usage rate for the nt item computed as Z E 3M usage
N

rate i

N = the number of observations for the nth item

S - the standard deviation for the nth item computed as

N .S(3M usage rate i - X)2

t - t-statistic used to define the 95% confidence limits
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2. Accuracy with Respect to Bias and Extremes. We measured accuracy

with respect to bias and extremes by the Mean Error (ME). The ME measures how

forecasts err. A negative ME indicates a forecast tends to overforecast,

while a positive ME denotes a tendency to underforecast. When an overforecast

occurs, the item has a better opportunity to be stocked (or stocked with a

larger quantity) and there is less risk of stockout (the part is likely to be

available); however, investment may be larger than required (excess material

may be bought). With an underforecast, the opposite is true (i.e., the item

will have a worse opportunity to be stocked, there is a higher risk of stock-

out, but less excess material will be bought). Forecast performance will be

ranked by the size of the overforecast. Small overforecasts are ranked high-

est. Large underforecasts are ranked lowest.

ME= (3M usage rate i - F1 )
1=1

where

ME - the mean error for the nth item

N = the number of observations for the nt"' item

F, - the ith forecast for the nth item

3M usage rate i = the actual 3M experienced rate for the nt" item during

the ith observation

3. Accuracy with Respect to Magnitude of the Errors. We measure ac-

curacy with respect to -he magnitude of the forecast errors by the Meain Square

Error (MSE). Here we are interested in how close the forecast is to the 3M

usage rate. Consequently, forecast performance is ranked on the ability to

forecast precisely (with small errors).
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NMSE - Z (3M usage ratei - Fj) z

where

MSE - the mean square error for the nth item

N - the number of observations for the nth item

Fi - the ith forecast for the nth item

3M usage rate i - the actual 3M experienced rate for the nth item during

the i h observation

III. FINDINGS

This section is comprised of two parts. In the first segment, we will

identify and analyze problems associated with the current BRF. In the next

section, we will propose alternatives for improving the BRF.

A. BRF PROBLEM ANALYSIS.

To determine what problems exist, and if the concerns mentioned pre-

viously are valid, we took a multi-faceted approach. First, we examined the

two forecasting methods available under Resystemization; i.e., Exponential

Smoothing and the Ratio Method. Next, we analyzed the volatility and trend of

the current BRF. Then, we examined CASREP requisition data. Using the CASREP

data, we identified and investigated problem items. Finally, we analyzed

items on a problem equipment (the PHALNX data set).

1. Exponential Smoothing Versus the Ratio Method. The current BRF

and the Ratio Method use different techniques to transition from the TRF to all

experience-based demand rate. They can also use different data sources. For

complete details see APPENDIX B. Our discussion focuses on the techniques

used to phase observations into the forecast with an emphasis on the degree of

adaptability and stability of the methods. The tradeoff between adaptability
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and stability is usually controlled by the amount of influence or weight pla-

ced on recent observations versus older observations. APPENDIX C provides a

detailed explanation of how these weights are developed for each method.

Exponential Smoothing is a moving average technique. The name is derived

from how the influence or weight placed on an observation changes over time;

i.e., it declines exponentially. For example, viewing TABLE I we see that tle

weight of the first observation (viewed for the first time in year two) decli-

nes from .4 to .007 over a nine year period using a smoothing weight of .4,

and declined from .1 to .043 using a smoothing weight of .1.

The degree of adaptability and stability for this forecast method is de-

termined by the smoothing weight (a). With a higher weight, more emphasis is

placed on the more recent observation than on the older observations; there-

fore, the forecast adapts quicker to changes than with a lower weight, but is

less stable. A lower weight places more emphasis on older observations than

the more recent observations. Consequently, the forecast does not react as

quickly as with a higher weight (less adaptable), but is more stable. This

can be seen by viewing TABLE I. TABLE I provides a comparison of the emphasis

placed on observations for up to a 10 year period, for high (.4) and low (.1)

smoothing weights. For example, in the l 0 th year, 64% (.24 + .4) of the high

smoothing weight forecast is from the two most recent observations compared to

19% (.09 + .1) for the low smoothing weight forecast. The oldest two values

(TRF and first observation) account for only 1.7% (.01 + .007) of the high

smoothing weight forecast compared to 41% (.367 + .043) of the low smoothing

weight forecast. Thus, the lower smoothing weight takes longer to "washout"

the effects on the initial forecast (TRF).
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TABLE I

EXPONENTIAL SMOOTHING WEIGHTS
WEIGHT = .4

OBS OBS OBS OBS OBS OBS OBS OBS OBS
YEAR TRF 1 2 3 4 5 6 7 8 9

YI 1.000
Y2 0.600 0.400
Y3 0.360 0.240 0.400
Y4 0.216 0.144 0.240 0.400
Y5 0.130 0.086 0.144 0.240 0.400
Y6 0.078 0.052 0.086 0.144 0.240 0.400
Y7 0.047 0.031 0.052 0.086 0.144 0.240 0.400
Y8 0.028 0.019 0.031 0.052 0.086 0.144 0.240 0.400
Y9 0.017 0.011 0.019 0.031 0.052 0.086 0.144 0.240 0.400
Y1O 0.010 0.007 0.011 0.019 0.031 0.052 0.086 0.144 0.240 0.400

WEIGHT = .1

OBS OBS OBS OBS OBS OBS OBS OBS OBS
YEAR TRF 1 2 3 4 5 6 7 8 9

Yl 1.000
Y2 0.900 0.100
Y3 0.810 0.090 0.100
Y4 0.729 0.081 0.090 0.100
Y5 0.656 0.073 0.081 0.090 0.100
Y6 0.590 0.066 0.073 0.081 0.090 0.100
Y7 0.551 0.059 0.066 0.073 0.081 0.090 0.100
Y8 0.478 0.053 0.059 0.066 0.073 0.081 0.090 0.100
Y9 0.430 0.048 0.053 0.059 0.066 0.073 0.081 0.090 0.100

Y10 0.367 0.043 0.048 0.053 0.059 0.066 0.073 0.081 0.090 0.100

The relationship between the size of the smoothing weight and stability

becomes murky if distortion occurs; i.e., we observe unusual values. A dis-

torted observation will have a greater initial impact on the forecast with a

larger weight than with a lower weight, but the distortion will also be fil-

tered out more rapidly with the higher weight than the lower weight. For ex-

ample (viewing TABLE I), an observation viewed for the first time in year two

accounts for 40% of the higher weight forecast as compared to 10% for the
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lower weight forecast. However, after four years (year six), that same obser-

vation will now accouit for more of the low weight forecast than the high

weight forecast (6.6% versus 5.2%). By the l0 th year, that ohservation will

have almost no influence on the high weight forecast (.7%) as compared to 4.3%

for the low weight forecast.

Exponential Smoothing is a widely used technique for many reasons. First,

it has been shown to provide viable results as compared to other methods in

numerous studies. Second, it is relatively easy to understand and use. Fin-

ally, it only requires two data points to compute a forecast; i.e., the old

forecast and the most recent observation. Consequently, Exponential Smooth-

ing is the method most widely used for large inventory systems.

The main problems associated with Exponential Smoothing are developing a

starting point and determining the smoothing weight. Smoothing weights are

usually chosen analytically based on the desired tradeoff between stability

and adaptability. The starting point is usually the first observation or an

average of initial observations over time. As can be seen by TABLE I, the

current policy (Exponential Smoothing with a weight of .4 and the TRF as a

starting point) places a large influence on the TRF. The TRF always has more

influence on the BRF than the first usage rate observed and almost as much

weight as the second observed usage rate. It takes five years of data to

reduce the TRF's impact on the forecast to less than 10%. Lowering the

smoothing weight places an even larger influence on the TRF. After 10 years,

the TRF still accounts for 37% of the BRF. More weight is given the TRF than

the four most recent observations combined (six through nine). Since TRFs are

only a best guess, this may cause a problem with the current BRF.

The Ratio Method was developed by the NSLC as an alternative to the cur-

rent method. With this method, the observations are not smoothed into the

9



TRF. The TRF is the forecast (the BRF) until either two demands have or

should have occurred. Then, the TRF is discarded, and the Ratio Method fore-

cast becomes the BRF. The Ratio Method divides total accumulated demand by

total population. This method claimed to weigh each observation equally and

thus improve BRF stability. However, as shown in APPENDIX C, this is not

necessarily the case. The weight of a yearly observation is dependent on

changes in the population size used to compute the usage rate. If population

is constant, then all observations are weighted equally. If population var-

ies, the weight of each observation is determined by the size of the popula-

tion generating that observation. For analytical purposes, we doubled the

population size each year and halved the population size each year, for up to

a 10 year period (see TABLE II). When population size increases, the forecast

becomes more adaptable and less stable; and, when population size decreases,

the forecast becomes less responsive and more stable. Population sizes used

to calculate usage rates change yearly. They increase and decrease from year

to year. Therefore, the degree of adaptability and stability changes from

year to year, is beyond the control of the user, and is unknown.
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TABLE II

RATIO METHOD WEIGHTS ASSUMING CONSTANT POPULATIONS

OBS OBS OBS OBS OBS OBS OBS OBS OBS OBS

YEAR 1 2 3 4 5 6 7 8 9 10

YI 1.000
Y2 0.500 0.500
Y3 0.333 0.333 0.333
Y4 0.250 0.250 0.250 0.250
Y5 0.200 0.200 0.200 0.200 0.200
Y6 0.167 0.167 0.167 0.167 0.167 0.167
Y7 0.143 0.143 0.143 0.143 0.143 0.143 0.143
Y8 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
Y9 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
Y10 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100

RATIO METHOD WEIGHTS ASSUMING POPULATIONS DOUBLE EACH YEAR

OBS OBS OBS OBS OBS OBS OBS OBS OBS OBS
YEAR 1 2 3 4 5 6 7 8 9 10

YI 1.000
Y2 0.333 0.667
Y3 0.143 0.286 0.571
Y4 0.067 0.133 0.267 0.533
Y5 0.032 0.065 0.129 0.258 0.516
Y6 0.016 0.032 0.063 0.127 0.254 0.508
Y7 0.008 0.016 0.031 0.063 0.126 0.252 0.504
Y8 0.004 0.008 0.016 0.031 0.063 0.125 0.251 0.502
Y9 0.002 0.004 0.008 0.016 0.031 0.063 0.125 0.250 0.501
Y1O 0.001 0.002 0.004 0.008 0.016 0.031 0.063 0.125 0.250 0.500

RATIO METHOD WEIGHTS ASSUMING POPULATIONS HALVED EACH YEAR

OBS OBS OBS OBS OBS OBS OBS OBS OBS OBS
YEAR 1 2 3 4 5 6 7 8 9 10

Y1 1.000
Y2 0.667 0.333
Y3 0.571 0.286 0.143
Y4 0.533 0.267 0.133 0.067

Y5 0.516 0.258 0.129 0.065 0.032
Y6 0.508 0.254 0.127 0.063 0.032 0.016
Y7 0.504 0.252 0.126 0.063 0.031 0.016 0.008
Y8 0.502 0.251 0.125 0.063 0.031 0.016 0.008 0.004
Y9 0.501 0.250 0.125 0.063 0.031 0.016 0.008 0.004 0.002

YIO 0.500 0.250 0.125 0.063 0.031 0.016 0.008 0.004 0.002 0.001
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In summary, with Exponential Smoothing, the user controls the degree of

stability and adaptability of the forecast and the influence of the TRF

through the smoothing weight. A large weight produces less stable more res-

ponsive forecasts. Lowering the weight increases stability and decreases res-

ponsiveness. Distorted values have a greater initial impact on the forecast

with a higher weight than a lower weight, but they are also filtered out of

the forecast quicker with a higher weight than a lower weight. With the Ratio

Method, the degree of stability and adaptability depends on changes in popula-

tion size; therefore, it is beyond the control of the user and is unknown.

Population increases create more responsive, less stable forecasts. Popula-

tion decreases produce more stable, less responsive forecasts.

2. BRF Volatility and Trend. We defined an item's BRF as volatile

if it had a percentage change of greater than 25% between any two consecutive

years. Only one change between any two consecutive years was necessary to be

defined as volatile. We used Pearson's correlation coefficients (r) (see

APPENDIX D for r computation) to measure trend over the entire 10 year BRF

history file (1,269,864 items, including some obsolete items).

Based on our criteria, 69% of the items had volatile BRFs. We found that

most of the changes were decreases. The largest group (13% of the volatile

items) had only one decrease and eight years of constant BRFs. The next lar-

gest groups (6%, 4%, and 3% of the volatile items) had nine straight years of

BRF decreases, eight years of decreases and one BRF increase, and eight years

of decreases and one year of no change, respectively.

Items with stable BRFs had little or no history. Of the items with stable

BRFs, 43% had no BRFs for the first nine years; i.e., they had no chance to be

volatile. We used statistical t-tests and F tests (see APPENDIX D) to deter-

mine that the volatile items had significantly larger average 3M populations
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than the stable items. As shown in TABLE III, the 3M populations vary more

and are larger for the volatile items than the stable items. This implies

that the volatile items have more opportunity for demand history.

TABLE III

3M POPULATION

STABLE ITEMS VOLATILE ITEMS

AVERAGE 140.0 409.2
STD DEVIATION 8,973.4 13,936.3

In the previous section, we found that the current policy places a large

influence on the TRF. Therefore, we recomputed the BRF using the data on the

history file with Exponential Smoothing but without TRFs, manual changes,

ordnance freezes, and overrides; i.e., the subjective portion of the forecast

was eliminated. The smoothing weight was held to .4 (current policy) and the

first observed usage rate was the starting point. (NOTE: Prior to 1985, if a

usage rate was greater than the BRF, a weight of .8 was used. Since this po-

licy has been changed, and most of the volatile items had decreases rather

than increases, we chose to use the current policy (a = .4) over the entire

time period.) TABLE IV shows that eliminating the subjective porLion of the

forecast produced about 2.5 times more items with stable BRFs. This proves

that the TRFs, manual changes, ordnance freezes, and overrides cause most of

the BRF unstability, not Exponential Smoothing.
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TABLE IV

BRF VOLATILITY

RECOMPUTED
SYSTEM BRF
BRF (W/O SUBJECTIVES)

VOLATILE 878,246 310,667
STABLE 391,618 959,197

We computed Pearson's correlation coefficients (r) to measure trend over

time for the System BRFs, 3M usage rates (3M demand divided by 3M population),

and Recomputed BRFs without subjectives. We used this statistic to determine

whether the actual 3M rates are trending, and whether the current System BRF

and/or the Recomputed BRFs show the same trend pattern.

The correlation coefficients, rounded to the nearest tenth, for the System

BRF, the 3M usage rate, and Recomputed BRF without subjectives are displayed

in TABLE V. We also provide the number and percent of items associated with

each value of r. A value of 0 indicates no trend. Viewing TABLE V, we see

that System BRFs (current method as found on the 10 year history file) are

more likely to have a trend than 3M usage rates. The correlation coefficients

were zero for only 7% of the System BRFs as compared to 78% for 3M usage

rates. For the TABLE V items, Pearson's coefficient tells us we can be over

95% confident that items with an r greater than .5 or less than -.5 are trend-

ing. Thus we are over 95% confident that 57% of the item System BRFs have

trend (33% negative trend and 24% positive trend) compared to 4% of the item

3M usage rates (2% negative trend and 2% positive trend). Eliminating the

subjective portion of the forecast yields forecasts which have correlation co-

efficients closer to 3M usage rates; that is, the Recomputed BRFs trend closer

to actual 3M usage rates than the System BRFs. Now, 73% of the item forecasts

14



have values of zero for r. Only 15% of the item forecasts have a trend (5%

negative trend and 10% positive trend).

TABLE V

TREND ANALYSIS

RECOMPUTED BRFs

SYSTEM BRF 3M USAGE RATE W/O SUBJECTIVES

r NUMBER PERCENT NUMBER PERCENT NUMBER PERCENT

- 1 13,073 1 32 0 2,838 0
-.9 169,307 13 926 0 29,762 2
-.8 137,383 11 3,313 0 12,804 1
-.7 61,708 5 8,246 1 8,189 1
-.6 36,811 3 9,516 1 16,102 1
-.5 97,761 8 22,027 2 10,926 1
-.4 18,984 2 20,604 2 7,823 1
-.3 31,583 3 20,222 2 14,720 1
-.2 23,122 2 17,874 1 7,499 1

-.1 23,354 2 19,571 2 12,676 1
0 90,958 7 990,562 78 923,459 73

.1 23,036 2 22,436 2 8,771 1

.2 25,851 2 21,464 2 16,210 1

.3 44,540 4 23,529 2 10,554 1

.4 31,376 3 25,295 2 19,819 2

.5 132,490 10 34,115 3 40,319 3

.6 29,052 2 12,531 1 41,659 3

.7 75,444 6 10,819 1 44,332 4

.8 113,550 9 5,215 0 27,374 2

.9 88,291 7 1,516 0 12,780 1

1 180 0 41 0 1,238 0

In summary, examining the volatility and trend of System BRFs, we found

that items with volatile BRFs tend to have a small number of changes (which

are decreasing) and items with stable BRFs have little to no history. The

System BRF trends more than the actual 3M usage rate; i.e., 57% of the item

System BRFs show trend versus 4% for item 3M usage rates. Recomputing BRFs

from the data without subjectives (i.e., eliminating TRFs, manual changes,
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ordnance freezes, and overrides) produces a more stable forecast and one that

trends closer to actual 3M usage rates. The number of items with stable BRFs

increased by about 150% and the items with trend decreased from 57% to 15%.

This proves that volatility and trend are largely due to TRFs, manual changes,

ordnance freezes, and overrides, not to Exponential Smoothing or alternative

data sources.

3. CASREP Requisition/Problem Item Analysis. We reviewed sample CAS-

REP "problem" items to determine whether the BRF was a major cause of the CAS-

REP. Most CASREP requisitions only occurred once in the two year period. Of

the 43,024 items with CASREP requisitions, 71% only occurred once. Based on

the criteria of the previous section, 59% of the CASREP items had volatile

System BRFs (64% of these had only one CASREP requisition). Out of the 57

ship types reporting CASREP requisitions, 54% of the CASREPs were from five

ship types; i.e., SSN, DD, DDG, FF, and FFG.

Using Pearson's correlation coefficients from the previous section (r >

1.51), we investigated whether or not there was a problem with System BRFs and

3M usage rates trending in opposite directions. This was not a problem. Of

the 1,001 items with BRFs having positive trends and 3M usage rates with nega-

tive trends, 12% had CASREPs (57% of these had only one CASREP requisition).

The number of CASREP requisitions ranged from zero to 17. We found 5,180

items having System BRFs with negative trends and 3M usage rates with positive

trends. Only 14% of these items had CASREP requisitions (62% of these occur-

red only once). The number of these requisitions ranged from zero to 36. For

most of these 5,180 items, the TRF is larger than the 3M usage rate, and over

time the System BRF and 3M usage rates are trending toward each other.

For analysis purposes, we defined a problem item as an item with more than

50 CASREPs in the two year period. Based on our criteria, 26 items were iden-
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tified as problem items. We readily concede that items with 50 or less CAS-

REPs may also be problem items; however, limiting the sample to a small number

of items allowed us to do more in-depth analys;is.

Some of the problems we found with these items were not related to the

BRF. First, 3M population data was not always available for these items on

the 10 year history file, even during the period when the CASREPs occurred.

Second, these items' BRFs tended to be large. The largest, smallest, most re-

cent, and oldest BRFs for the NIINs of these items are displayed in TABLE VI,

along with the number of years of BRF history (an asterisk denotes items which

had gaps where the history was missing or unavailable). For 62% of these

items, the smallest BRF was at least .1, and for 69% of the problem items, the

most recent BRF was at least .1. Under MOD-FLSIP rules, an item with an ex-

pected demand (BRF * Population) of at least .1 and an Item Mission Essen-

tiality Code (IMEC) greater than 2 has at least one Minimum Replacement Unit

(MRU) stocked. Since these items had more than 50 CASREPs, we can assume that

their IMECs were 3 or more. Thcrefore, even with a population as low as one,

we can assume at least one MRU was stocked for most of these items. This im-

plies that the problems associated with these items may be related to the

population data, or the model (not enough depth), or supply availability (as-

sets not available in the system). Finally, all of the problem items are re-

pairables. Repairable items (even appearing multiple times in an equipment)

must be CASREPed separately. Therefore, one equipment failur-t can genritt,

multiple CASREPs for the same item, as well as different items.
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TABLE VI

PROBLEM ITEMS' BRFs

NUMBER OF

NIIN MIN BRF MAX BRF MOST RECENT OLDEST YEARS BRF HIST

001221493 0.350 0.490 0.380 0.350 9*

003635619 0.260 0.970 0.970 0.260 10
004662258 1.000 1.700 1.300 1.000 10
006137235 0.016 0.110 0.020 0.110 10
008690109 0.003 0.007 0.003 0.005 10
009495591 0.180 0.400 0.300 0.190 10
010224765 0.020 0.180 0.038 0.020 10
010498099 0.230 0.600 0.230 0.600 10
010543301 0.110 0.970 0.110 0.500 10
010673688 0.100 0.180 0.160 0.100 10
010804324 0.120 0.800 0.120 0.800 9
010822927 0.066 0.160 0.160 0.100 10
010898895 0.045 0.300 0.093 0.300 10
010965933 0.500 0.780 0.670 0.500 6
011041308 0.240 0.431 0.300 0.431 9*
011099480 2.000 2.100 2.100 2.000 10
011187279 0.038 0.120 0.110 0.120 10
011442593 0.100 0.270 0.250 0.100 6
011513058 0.170 0.490 0.490 0.170 5
011575880 0.001 0.780 0.001 0.780 8
011577009 0.046 0.164 0.062 0.046 9
011586889 0.100 0.650 0.100 0.650 5*
011637619 0.034 0.170 0.034 0.170 9
011769727 0.001 0.330 0.001 0.330 8
011979852 0.497 0.497 0.497 0.497 4*
012126298 0.309 0.309 0.309 0.309 3*

*Denotes history not consecutive

We found inconsistent usage rates for these items, both over time and be-

tween 3M, MLSF, and system data. The autocorrelation coefficients (this is

another way to measure trend which requires a visual confirmation) for all

three data source usage rates dropped to zero after one time lag. This indi-

cates the data is stationary (a flat nonsloping trend). Therefore, either the

Exponential Smoothing method or the Ratio Method is appropriate, as neither of

these methods allow for a linear trend.
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Most of the items have significant BRF histories (see TABI.E VI). For- SOMW

items, the BRF history is not consistent. However, 62% of the problem items

have nine or more consecutive years of history. For these items, the TRF

should account for no more than 1.7% of the forecast (see TABLE I). There-

fore, the TRF should not be a factor in these BRFs.

Although not shown in this report, we plotted the System BRF, the Recom-

puted BRF, the Ratio Method BRF, and the usage rates over time. The system

forecast was the actual BRF value on the 10 year history file. In most in-

stances, the System BRF exceeded the usage rates. The System BRF did not al-

ways follow an item's usage rate pattern. For some items, a BRF change was

exaggerated as compared to the actual usage rate change. This indicates man-

ual manipulation of BRFs for some reason.

We next analyzed whether or not the Ratio Method provided a more stable

forecast than Exponential Smoothing. & previous study (reference 1 to APPEN-

DIX A) compared the current method and the Ratio Method with respect to accur-

acy and COSAL effectiveness. However, it did not distinguish differences in

the forecasts due to TRF transitioning. We wanted to compare method to method

with no TRF transitioning effect. The Recomputed BRF without subjectives

allows us to compare pure Exponential Smoothing with the Ratio Method. The

Ratio Method BRF was computed using 3M data only (as per APPENDIX B), but no

TRF transition was made. Therefore, if an item had 3M data only, the Recom-

puted BRF and the Ratio Method BRF would use the same data.

Looking at the forecasts over time, both the Ratio Method and Exponential

Smoothing BRFs varied, but not more than the actual usage rates. To d(,teimilne

if one forecast varied more than the other, we conducted an F test on their

variances for each item (see APPENDIX D). The F test indicated that the Ex-

ponential Smoothing BRF varied more than the Ratio BRF (at the 5% level of
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significance) for five of the 26 items. For two items, this was a matter of

using alternative data versus 3M data only forecasts. One of these two items

never had any 3M data (other sources were available); i.e., there was no ratio

forecast (in reality it would be the TRF). The other item had 3M data for

only the first two years (1978 and 1979); therefore, the forecast was not up-

dated by the Ratio Method, but was with Exponential Smoothing. The other

three items contained extreme observations that should have qualified for a

manual review. Ratio Method did not vary more than the Exponential Smoothing

for any of the 26 items.

In summary, we found CASREPed requisitions occurred for a relatively small

number of items (43,024) and most occurred only once in the two year history

(71%). Items with BRF and 3M usage rates with opposite trends were not a fac-

tor. Twenty-six items were identified as problem items for in-depth analysis.

Population data (3M) was not always available for these items on the 10 year

history file. Most of these items had BRFs large enough to ensure stockage,

regardless of population size, and the BRF was often larger than the observed

usage rates. Since most of these items have significant BRF histories, the

TRF should have been filtered out of the forecast and was not considered a

problem. Usage rates for the problem items were found to be inconsistent and

stationary. Evidence of manual BRF changes were observed. Exponential

Smoothing with a weight of .4 tends to not vary more than the Ratio Method.

4. The PHALANX Data. Here we narrowed the scope of our analysis by

targeting an equipment. The PHALANX was selected because it is a high profile

problem equipment with a reasonable number of items (3,336). We were able to

match 82% of the items with the 10 year history file. First, we examined the

CASREP requisitions. Then we compared Exponential Smoothing and the Ratio
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Method. Keep in mind, our purpose here was to gain insight, not to determine

the best method.

The number of items, percent of items with no CASREP requisitions, per-

cent of items with one CASREP requisition, and the maximum number of CASREP

requisitons are shown in TABLE VII for the overall equipment and grouped by

Cog. The majority of items did not have chronic problems. Only 12% had a

CASREP requisition in the two year period. Multiple CASREPs occurred for only

5% of the items. If an item had a problem, it probably was a 7 Cog (repair-

able item). For 7 cog items, 18% had more than one CASREP requisition in the

two year period, compared to 4% and 2% for 1 and 9 Cog items. The number of

CASREP requisitions for an item also ranged higher for 7 Cog than for 1 and 9

Cog. For the PHALANX, 7 Cog items represented a small number of items (12%),

but a large proportion of CASREP requisitions (29%) and multiple CASREPs

(43%).

TABLE VII

PHALANX CASREP ANALYSIS

PERCENT PERCENT

NO. ITEMS NO CASREPS ONE CASREP MAX CASREPs

OVERALL 3,336 88 7 73

ICOG 711 88 8 12

7 COG 396 71 11 73

9 COG 2,220 92 6 16

Since the forecast performance measurements (stability, ME, and MSE) are

only useful when comparing methods (we cannot say a method is stable or ac-

curate; we can only say a method is more stable or more accurate than another

method), we recomputed BRFs from the data using Exponential Smoothing and the

Ratio Method (the methods available under Resystemization). Again, our in-
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terest is in comparing methods. Therefore, we ignored the System BRF (which

has manual changes, ordnance freezes, overrides, and TRFs) and TRF transition-

ing. For Exponential Smoothing, we used the two weights from our first dis-

cussion comparing Exponential Smoothing and the Ratio Method; i.e., .4 and .1.

As computed previously, the first observed usage rate was the starting point

and the forecast was updated even when 3M data was unavailable. The Ratio

forecast was computed as in the previous section with 3M data only.

Since we have a large number of items, we are concerned about the general

tendency of the performance measurements. Therefore, we will use the mean and

median to measure central tendency and the standard deviation to measure the

dispersion. The mean is the arithmetic average. Each observation has the

same weight. Therefore, it is sensitive to a few extreme values. The median

is simply the midpoint. Half the observations are larger and the other half

are smaller than the median. Extreme values have no influence on the median.

The standard deviation measures how items vary around the mean. If all the

observations are close to the mean, then the standard deviation will be small;

i.e., there is little dispersion. We calculated the mean, median, and stan-

dard deviations for the ME and MSE for the two forecast methods, along with

the smallest and largest errors.

We first analyzed the ME and MSE for the entire PHALANX data set (TABLE

VIII). To eliminate the effect of using alternative data when 3M data is un-

available, we then performed the same analysis for the subset of PHALANX items

containing 10 years of 3M data (TABLE IX). Finally, to determine the impact

of updating with alternative data sources, we again performed the same analy-

sis with the entire PHALANX data set, but we did not update the forecast when

3M data was unavailable (TABLE X).
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Interpreting TABLE VIII, we see that in terms of ME, Exponential Smoothing

with a weight of .4 is best, Exponential Smoothing with a weight of .1 is

worst, and the Ratio Method is in between. We also note that the Ratio Method

tends to underforecast (positive mean ME), while the other methods tend to

overforecast (negative mean ME). The three methods are close in terms of the

MSE.

TABLE VIII

PHALANX DATA SET - ALL THE DATA
3,336 ITEMS

EXPONENTIAL SMOOTHING

WEIGHT = .4 WEIGHT = .1 RATIO METHOD

ME MSE ME MSE ME MSE

MEAN -0.289 22,956.4 -0.306 19,782.3 0.911 20,838.8
STD DEV 13.238 1,302,679 40.366 1,079,588 17.056 1,189,444
MAXIMUM 125.641 75,230,859 1439.87 62,259,066 935.627 68,695,920
MEDIAN 0 .000008 0 .000009 0 .000007
MINIMUM -727.2 0 -1799.09 0 -298.83 0

Since the Ratio Method does not update the forecast when 3M data is un-

available and Exponential Smoothing does, we still do not nave a true compari-

son of methods. We need to eliminate the effect of using alternative data

when 3M data is unavailable. TABLE IX contains only PHALANX items with 10

years of 3M data. Now, all the forecasts use the same data, and we can obtain

a true comparison of methods. Interpreting TABLE IX, we see that for the ME,

the Ratio Method is the best, while Exponential Smoothing wit a weiPht of .1

is worst. The same results hold true for the MSE.
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TABLE IX

PHALANX DATA SET - 10 YEARS OF 3M POP
883 ITEMS

EXPONENTIAL SMOOTHING

WEIGHT - .4 WEIGHT - .1 RATIO METHOD

ME MSE ME MSE ME MSE

MEAN -0.9 1408.6 -2.25 3971.4 -0.337 912.1
STD DEV 24.5 40,781 60.6 116,812 10.2 26,121
MAXIMUM 1.9 1,211,629 10.7 3,471,071 41.6 775,917
MEDIAN -0.00004 0.00057 -0.0002 0.0008 0 0.0006
MINIMUM -727.2 0 -1799.09 0 -298.83 01

Since these items had 10 years of 3M data, they are a subset of the entire

PHALANX data set. That is, nothing different was done between TABLEs VIII and

IX. We just isolated those items with 10 years of 3M data. These items may

not give us a clear picture of the impact of updating/not updating with alter-

native data sources. Therefore, we again recomputed the Exponential Smoothing

with a weight of .4 for the entire PHALANX data set and used only 3M data;

i.e., we did not update the forecast when 3M data was unavailable. (We only

recomputed the .4 forecasts because we wanted a concise comparison and .4 is

the current policy.)

TABLE X contains the comparisons of Exponential Smoothing (weight of .4)

using alternative data (benchmark) and 3M data only (alternative). Comparing

the two Exponential Smoothing alternatives, we see that for both the ME and

MSE, the method using alternative data sources is better than the 3M data only

alternative. Overall, the evidence in TABLE X indicates that accuracy is lost

by not updating the forecast when 3M data is unavailable. This loss of accur-

acy results in larger overforecasts.
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TABLE X

PHALANX DATA SET - ALL THE DATA
3,336 ITEMS

EXPONENTIAL SMOOTHING WEIGHT = .4

EXPONENTIAL SMOOTHING

BENCHMARK ALTERNATIVE

ME MSE ME MSE

MEAN -0.289 22,956.4 -0.458 25,885.5
STD DEV 13.238 1,302,679 18.0422 1,473,485
MAXIMUM 125.641 75,230,859 25.14 85,097,483
MEDIAN 0 .000008 0 .000006
MINIMUM -727.2 0 -745.314 0

NOTE: BENCHMARK = IF NO 3M POP EXISTS, THEN UPDATE FORECAST
USING ALTERNATIVE DATA SOURCES

ALTERNATIVE - IF NO 3M POP EXISTS, THEN NO FORECAST
UPDATE IS MADE

Now, we will look at stability. Here we examined the fast moving items;

i.e., items with 10 years of positive 3M usage rates. We selected these 344

fast moving items for several reasons. As discussed previously, we used con-

fidence limits on 3M data; therefore, items with no 3M data would be eliminat-

ed. Since the methods use the same data, we obtain a better comparison. Fin-

ally, the fast moving items should be the most variable. Exponential Smooth-

ing with a weight of .1 was the least likely method to have an item's forecast

exceed the limits (51% of the forecasts were within the confidence limits all

10 years); while, Exponential Smoothing with a weight of .4 was the most like-

ly method to have a forecast exceed the limits (only 10% of the forecasts were

within the confidence limits all 10 years). The Ratio Method was in between

(36% of the forecasts were within the limits all 10 years). However, once an

item's forecast exceeded the limits, it was most likely to stay outside using

Exponential Smoothing with a weight of .1. It was least likely to stay' out-
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side using Exponential Smoothing with a weight of .4. Both the Ratio Method

and Exponential Smoothing with a weight of .1 had item forecasts exceed the

limits all 10 years. Exponential Smoothing with a .4 weight had no item fore-

cast exceed the limits for more than six years. Exponential Smoothing with a

weight of .4 had a standard deviation of 1.3. With a weight of .1, the mea-

sure of dispersion increased to 3.8. The Ratio Method was in between.

In summary, with Exponential Smoothing, lowering the weight increases the

stability but reduces the adaptability of the forecast. Extreme values will

have less impact on the forecast initially with a lower weight than with a

higher weight; but over time, extreme values have a larger influence with the

lower weight than the higher weight. This confirms the theoretical analysis

presented earlier. Viewing TABLEs VIII and IX, we see the extreme values (the

minimum and maximum ME) are larger for the lower weight than the higher weight.

We have also seen that forecasts are more stable with a lower weight, but once

they become distorted are less likely to self correct. With the higher weight

the forecasts are more likely to become distorted, but are also quicker to re-

adjust. The Ratio Method is somewhere in between.

With respect to CASREPs, the PHALANX data findings were consistent. Re-

latively few PHALANX items had CASREPs, and for those that did, most only oc-

curred once in the two year period. Only 5% of the PHALANX items had more

than one CASREP. Furthermore, if an item has a problem it is most likely a

repairable item. Repairable items (7 Cog) represent a small percent of the

PHALANX items (12%), but a large proportion of the CASREP requisitions (29% ot

all CASREP requisitions and 43% of multiple CASREPs).

Comparing forecast methods, Exponential Smoothing has a tendency to over-

forecast and the Ratio Method tends to underforecast when considering all
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items. Accuracy may be lost by not updating forecasts when 3M data is un-

available.

5. Conclusions - BRF Problem Analysis. With Exponential Smoothing,

forecasts tend to err on the high side (overforecast). For the Ratio Method,

forecasts tend to err on the low side (underforecast). Eliminating the sub-

jective portion of the forecast (TRF, manual changes, ordnance freezes, and

overrides) and using a constant smoothing weight of .4, we obtained BRFs that

trend closer to actual 3M usage rates than current BRFs and are more stable.

These forecasts vary no more than the Ratio Method forecasts. Lowering the

smoothing weight to .1 decreases the magnitude of overall errors, but the

magnitude of the extreme errors increased. The forecast was less likely to

exceed 95% confidence limits for average 3M usage rates than with a weight of

.4 or the Ratio Method. However, once the limits were exceeded, the forecasts

were more apt to self adjust/correct with the higher weight (.4) than with the

Ratio Method or the lower weight (.A). 3M data forecasts may not be as accu-

rate as forecasts which also use other data when 3M is unavailable. Tih ,-e

errors were generally larger overforecasts.

Item support problems may not be related to the BRF but to data, depth

(the model), and/or supply availability. CASREP requisitions occurred for a

relatively small numb-r of items and most (71%) only occurred once in a two

year period. Only 5% of the PHALANX data had more than one CASREP req i sit i on,

Most of the CASREP items analyzed had BRFs large enough to ensure shiphold

stockage, and the BRF was often larger than the observed usage rate.

27



B. BRF IMPROVEMENT.

From the previous section we found:

* BRF instability and trend primarily result trom the subjective

portion of the forecast - TRF, manual changes, ordnance freezes.

and overrides.

• Short term extreme data observations also produce excessive

variation.

" Based on the number of items with zero correlation coefficients

(and the autocorrelation coefficients for the problem items), most

items are stationary. Therefore, single Exponential Smoothinp i':

an appropriate forecast method.

* 3M data is not always available to update the BRF.

Therefore, we need to:

* Examine alternatives for transitioning the TRF into the forecast.

* Minimize the impact of short term extreme data observations.

0 Determine the impact of updating/not updating the forecast when on

data is unavailable.

1. Alternative Forecast Methods. The following discussion gives i

brief overview of the forecasting methods considered as alternatives to the

current method. For a detailed description and the mathematical formulas see

APPENDIX B.

The DDG 52 RBS working group is using (and proposing) a Bavesian me,,.

Bayesian forecast methods use Bayes' theorem to update a subjective for(ca.;t

(TRF) with objective data (usage rate). The weights are similar to thi( R,,t io

Method (see APPENDIX C). The traideoff between adaptability aind stability dc,

pends on changes in population si;,e; i.e., increases in population si: c pro-
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duce a more adaptable forecast, and decreases produce a more stable one. The

amount of influence given the subjective portion versus the objective portion

of the forecast depends on TRF size. For small values, the TRF has more in-

fluence than the objective data. With large values, the objective data has

more influence than the TRF. With the Bayes method, the weight is an unknown

variable beyond the control of the user.

We compute the Bayes forecast two ways. One forecast uses 3M data only.

The other uses alternative data sources to update the forecast when 3M data is

unavailable. The priority of data selection is the same as under current po-

licy; i.e., 3M, then MLSF, then system demand.

Since the Ratio Method is included in Resystemization, we also reevaluate

it. This method is computed as discussed previously and described in APPENDIX

B. (Currently, the Ratio Method is defined to only use 3M data.)

We next develop an alternative specifically designed to address the pro-

blems identified earlier in the report. As shown previously, one of the pro-

blems with the current procedure is related to TRF transitioning. The fore-

cast can also be improved by eliminating excessive short term data observa-

tions. lf a lower weight is used, accuracy and stability improve for some

items. For other items, they get worse. The same can be saic for using 3M1

data only versus updating the forecast with alternative data when 3M is un-

available.

The smoothing weight and data concerns can be handled easily. We can test

which forecast performs better for the majority of the items. Therefore, we

compute the exponential forecasts with 3M data only and using alternative data

when 3M is unavailable. A high weight and a low weight will be used, We
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chose .4 and .2 as the smoothing weights, because under current policy, .4 is

used at the consumer level and 2 at the wholesale level.

TRF transitioning and minimizing excessive short term data changes are

more difficult problems. We cannot discard the TRF. For some time period,

the TRF is the only estimate we have of the usage rate. Also, Exponential

Smoothing must have observed usage to identify a pattern (an average or level)

and project that pattern into the future. Furthermore, we need to have obser-

ved some usage rates to determine what is an excessive data change.

As an alternative to current procedures, we adjust the TRF over the de-

velopment period with a probability distribution. We can treat the TRF as a

point estimate. The question becomes: given this estimate of the usage rate

(TRF), is the usage rate observed realistic? If it is, then the TRF is a rea-

sonable estimate and we do not adjust it. Otherwise, we adjust the TRF to a

more reasonable level. We selected the exponential probability distribution

since it is often used to model failure rates, has been shown to be an appro-

priate distribution to model demand (reference 2 of APPENDIX A), and requires

only one estimated parameter. For this study, the development period was

three years. We set a lower limit based on what we would expect to observe

50% of the time. We set an upper limit based on what we expect to observe 95%

of the time. For the first three years (forecasts 2 through 4), we adjust the

TRF if the usage rates observed are larger or smaller than we would expect,

given that estimate of the usage rate. In the fourth year, we switch to Ex-

ponential Smoothing, if we have observed four years of data. If we have not,

then we continue to adjust the TRF until we have observed four consecutive

years of usage data. The intention here is to develop a pattern. The de-

velopment period should be long enough to develop a pattern.

With Exponential Smoothing, (he starting point can he critical; therefore,
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we considered two different starting points. First, we used the adjusted TRF

described above. Since the TRF has been adjusted over the development period,

it may now provide a valid starting point.

For the other starting point, we used an average of the first three years

of observed usage rates. A pattern should now be established and we no longer

need the TRF. However, a given usage rate observation may be distorted. By

using an average, we do not put too much weight on one observation; i.e., we

want the distortion to filter out quickly. Starting in the next year (the

second year after switching to Exponential Smoothing), we "windsorize" the

most recent observation using the probability distribution limits previously

used to adjust the TRF. Here, we substitute the smoothed forecast in place of

the TRF. That is, based on what we have observed in the past, we identify

extreme observpi ns for the usage rate as those that fall outside upper and

lower limi s (This method was developed by Tukey; see reference 3 of APPEN-

DIX A.) If an observation is outside the limits, we will adjust the observa-

tion to the lower or upper limit. The adjusted usage rates will then be

smoothed into the forecast. Thus, excessive short term data changes will be

minimized.

For example, a BRF in year 7 with a value of 1.0, would cause the 8th

year's observed usage rate to be constrained between .7 and 3.0. Given this

constraint on the usage rate, the BRF for year 8 would be restricted to a

value between .88 and 1.8 in year 8. We want to find or establish the pattern

of the data (the usage rates). Short term changes distort the forecast away

from the true pattern of the data. Therefore, we want to ignore them. How-

ever, we can not distinguish between a short term change, the pattern, or a

new emerging pattern until after the fact.

To illustrate this procedure, assume an item has the usage and population
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data for an 11 year period shown in TABLE XI and a TRF of 2. Here we chose a

smoothing weight of .4 and the average data starting point method.

TABLE XI

SAMPLE ALTERNATIVE BRF COMPUTATION

BRF W/AVG DATA
YEAR USAGE POPULATION STARTING POINT

1 10 1 2
2 12 2 6
3 10 2 6
4 9 3 6
5 15 5 5.4
6 100 2 4.8
7 10 2 8.6
8 11 1 7.6
9 12 2 9.0

10 10 5 7.9
11 9 3 7.0

The BRFs for the first four years are the TRFs adjusted over the develop-

ment period with the exponential probability distribution. Since we have fou:"

consecutive years of observed data, the remaining BRFs are computed using ex-

ponential smoothing, but with the most recent observation "windsorized" to

minimize short term data changes using the probability distribution limits

previously used to adjust the TRF. For example, the usage and population data

in year 6 are used to compute the BRF shown in year 7. The usage rate of 50

(100/2) for year 6 is excessive compared to the previous years' usage rates.

Thus, we "windsorize" the data by setting the year 6 usage rate to 14.4, or

three times the BRF (estimated usage rate for year 6). Then the 14.4 is

smoothed with the forecast (4.8), using a smoothing weight of .4 to get the

final result of 8.6 for year 7.
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We have now identified three different forecast methods with various para-

meters and options, for a total of 11 alternatives to be evaluated.

* Bayes using alternative data sources when 3M is unavailable.

* Bayes using 3M data only.

* Ratio Method using 3M data only.

* Exponential Smoothing using alternative data sources when 3M is un-

available.

o a - .2 average data starting point

o a - .4 average data starting point

o a - .2 TRF starting point

o a - .4 TRF starting point

* Exponential Smoothing using 3M data only.

o a = .2 average data starting point

o a = .4 average data starting point

o a = .2 TRF starting point

" a - .4 TRF starting point

2. Selecting the Best Alternative. To begin our analysis, we first

need to determine the TRF. Therefore, we eliminated (from the 10 year history

file) items with BRFs in the oldest year, then we can assume that the first

observed BRF is the item's TRF. To obtain meaningful measurements of forecast

performance, items also had to have at least five years of history, with at

least three years of the history containing 3M data. This left 128,215 items

to measure forecast performance; of which, 91,543 were identified as readiness

contributors by their FSC codes as specified by NSLC.

Since there are a large number of items, forecast performance was eval-

uated based on criteria which measures the tendency of these items for a par-

ticular alternative. Forecast performance was ranked based on that criterion
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from one for best performance to 11 for worst performance. Methods which tie

for a particular performance element were assigned the average of the rinks;

e.g., two methods which tie for best performance would each be given a rank of

1.5 (1+2/2). The ranks were totaled across the three performance measure-

ments: stability, accuracy with respect to bias and extremes, and magnitude

of the errors. For each performance measuremen, we used five different sta-

tistics. Therefore, no one performance measurement dominated the selection

process. Since each statistic measured the performance differently, we have a

fair -epresentation of how well a forecast method performs. We considered the

method with the lowest rank sum to be the best alternative.

To determine how the alternative methods compare to the current procedure,

we computed the BRF using the current method and same data (TRFs and usage

rates) as the alternatives, with no manual changes, ordnance freezes, or over-

rides. This is the Benchmark; however, we did not consider the Benchmark in

the ranking. Ranks shown for the Benchmark reflect its performance relative

to the performance of the 11 alternatives. The Benchmark ranks are provided

only to facilitate comparisons; i.e., to determine whether or not the alter-

natives provide better results than the current procedure. For example, the

Benchmark's rank was set equal to an alternative's rank when their numbers

(mean, median, etc.) were the same.

a. Stability. We defined stability based on a method's ability

to forecast within the 95% confidence limits of the average 3M usage rate.

Therefore, we used the number of items always within these limits as a perfor-

mance element. The method with the most items has the best performance, the

least items has the worst performance. We also measured the mean number of
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times items were outside the limits. A forecast with a large mean has a high-

er number of items outside the limits for more years than one with a smaller

mean. Therefore, we assigned the best (lowest) rank to the method with the

smallest mean and the highest (worst) rank to the largeit mean. The median is

not influenced by large or small values. Therefore, a forecast with a small-

er median than another method is more stable. The mode is the most frequent

observation. We assigned the best rank to the alternative with the largest

number of items representing the smallest mode. Finally, we considered the

forecast alternative with the smallest standard deviation to be the most

stable, since it is not as widely dispersed as the other methods (has more

values closer to the mean).

The stability results are displayed for the readiness contributors in

TABLE XII and for all items in TABLE XIII. The results are consistent for

both data sets. The lowest cumulative ranks were achieved by the Exponential

Smoothing methods using alternative data sources and a data starting point

with either weight. These two alternatives were also ranked top in each cate-

gory with the exception of the "NO. ITEMS ALWAYS W/I LIMITS" category.

But even there, the numerical differences were small. However, the overall

rank difference between these two most stable alternatives and the methods

available under Resystemization (Ratio and Benchmark) are large.

Forecasts using alternative data when 3M data was unavailable produced

more stable forecasts. For the Bayes forecasts, using alternative data re-

sulted in a few more items always within the limits (64F for readiness con-

tributors/821 for all items). This effect was more pronounced for the Expo-

nential Smoothing forecasts than the Bayes. With Exponential Smoothing

(average data starting point either weight), the difference was primarily in

the mode. The value for the mode was the same, but over 2.5 times as many
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items had that value for the alternative data forecast vs the 3M data only

forecast. Consequently, the means and standard deviations are less for the

alternative data forecast; i.e., using only 3M data produced forecasts that

were outside of the limits for more years than using alternative data to up-

date the forecast when 3M was unavailable.

For Exponential Smoothing, the average data starting point produced more

stable forecasts than the TRF starting point regardless of the data source or

weight. The means, medians, modes, and standard deviations are higher for any

of the TRF starting point forecasts than the data starting point forecasts.

(Note the median and modes for the data starting point forecasts are three

years. For all other methods, the median and modes are six years. Since we

discarded the first forecast, we would have used the adjusted TRF for a mini-

mum of three years.)

We used ranks in order to make an objective decision with multiple cri-

teria. A problem with ranking is that small differences may be inflated and

large differences may appear small. Consequently, care was taken that no one

category or statistic would dominate the selection process. To insure that

this occurred and that one rank did not have an undue influence, we reviewed

each statistic, comparing the selected method with the alternatives. With

respect to stability (TABLEs XII and XIII), no method performed better than

Exponential Smoothing using alternative data sources and an average data

starting point based on the mean, median, mode, and standard deviation. The

Bayes and Ratio alternatives did forecast within the limits for more items

over the entire forecast horizon than Exponential Smoothing. However, the

maximum difference was less than 3% of the universe.

36



P4 0 ,ON- -D Ocn ft- -4

o c cn r- -4 M cr) CA-* cn

CA C*4-1D D0 04 QNN Le) C14 -4 r-

OO I)~ %D D L) ti, Li,
CI CA 0 r, f--N4N N eqN N q r

L! 00ooo c,~\

0 u LrL In
000 o c 0 ;C 0

(0Z
___ _ _ _ _ _ _ -

4 ~ Z 0 C

4-z
04C .- 4 \0Nn i 0O lr, 0 N z1 -44

00 "D -4 CN 'T 'r -4 r-M -N r- 4

*3D a%0' 0O c m \o0 00 o
1 N C-4 -4 -4 -4 '-4

z
0

Cfn

zz

0 4 ,4

M00 0

37



o 0L 1 qc (VIN .I4 C 00Ln

E- (-4 tUN' LrN- 12
n In _

o CA N CA \0'N %0oNN4Cq N N C1 -

\0 \_ _ _ _ _ _ _ _ _ 0Y D\ c l 0

(D C/)~ -4

>< LL - P4

Iz<
LLU >- ~0 =

I- -n 00:i -4-4 -004 m t>0
~1- - 4-

Nc'Jt.'L r CCff.Lf C1 - 0 nCA

a.' _____________\ ____________ChI
z E

4~~- CA- ,c n 0C 0m 4 4-.

En EnI Lf.'C) a Ln h 4O\DN 1 O N , 1-

.3; 0oD m 0 o r-' \0,rV'Okn C4
M~ C.N C4 0 N CAN 040NN* N N

E- E -40 U E4 -ww - -

" -4 C1 14 -4 CI N-4C4 -tz

11' 11[* 0 l 11 1
U)C/)0 0 t2C.

X: z

38



b. Bias and Extremes. Negative MEs denote overlorecasts (less

risk of stockout). Therefore, we assigned the method(s) with the least nega-

tive mean and median MEs (i.e, the least overforecast) the best (lowest) ranks

and the method with the most positive mean and median MEs (i.e., the greatest

underforecast) the worst (highest) ranks. All overforecasts were ranked

better than the underforecasts. Since one extreme value can influence the

mean and we are interested in how well the forecast methods handle extreme

values, the method(s) with the smallest (in absolute terms) maximum and mini-

mum were considered as performing the best. The standard deviation also de-

notes how well a method handles extreme values. A method with a smaller stan-

dard deviation has less extreme values than one with a larger standard devia-

tion.

The results with respect to bias and extremes are displayed for the read-

ness contributors in TABLE XIV and all items in TABLE XV. Here, the results

are inconsistent between the readiness contributors and all items. Based on

readiness contributors, the Exponential Smoothing (.4 smoothing weight) using

alternative data with either starting point are the best performers with cumu-

lative ranks of about 16. The current BRF method is next at 19. Across all

items, all the methods except smoothing with the TRF starting point are ranked

fairly close.

The results were also inconsistent between readiness contributors and all

items for 3M only vs alternative data forecasts. For all items, for beth the

Bayes and Expcnential Smoothing forecasts (all weights and starting points),

the 3M o, Iy dAta forecasts outperformed the alternative data forecasts. For

the readiness contributors, the alternative data outperformed the 3M data only

forecasts. The average data starting point performed better for all items;

while there was little difference between the two starting points for the

readiness contributors.
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With respect to bias, the smoothing method (.4 weight) with alternative

data sources and average data starting point method does have a tendency to

err by overforecasting. However, it does not overforecast as much as other

alternatives. The medians were the second best for both the readiness con-

tributors and all items. Furthermore, the mean performed second best for the

readiness contributors and third best for all items. In terms of handling ex-

treme values, this method was ranked near the middle. Compared to the methods

available under Resystemization, this method does not overforecast as much as

the Benchmark and it does not handle extreme forecast errors as well. The

Ratio Method consistently underforecasts based on the medians and means.
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c. Accuracy. Small MSEs indicate errors that are small in inag-

nitude. Therefore, we considered the alternat ive(s) with the ; lalest mean

and median MSEs to be the most accurate forecast. Since we have already con-

sidered extreme values, we now focus on the upper and lower quartiles. These

statistics are similar to the median and insensitive to extreme values. The

upper quartile has 25% of the observations greater than or equal and 75% less

than or equal to it. The lower quartile has 75% of the observations greater

than or equal and 25% of the observations less than or equal to it. They

allow us to ignore one-fourth of the largest values and one-fourth of the

smallest values. We assign the method with the smallest MSE quartile the best

(lowest) rank. We use the standard deviation here also. Again, we consider

the method with the smallest value for the standard deviation to be the best

performer.

The results for accuracy with respect to the magnitude of the errors are

displayed in TABLE XVI for the readiness contributors and TABLE XVII for all

items. The MSEs will be small for the quartiles and medians. (This is the

nature of the measurements. We would be concerned if they were not, given the

small size of most BRFs and usage rates.)

The tables show that for readiness contributors and for all items, the Ex-

ponential Smoothing methods using alternative data and the TRF starting point

(either weight), and 3M only with a weight of .4 and the TRF starting point

are the best performers. For readiness contributors, the ranks were 15-17.5.

The Exponential Smoothing method using alternative data sources, an average

data starting point with a weight of .4 is close with a total rank of 22.
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Based on the quartiles and medians, using alternative data wheil 3M data

was unavailable produced more accurate forecasts for all items and the readi-

ness contributors regardless of method. The means and standard deviations

were usually slightly smaller for the 3M only data forecasts than the alter-

native data forecasts. This is consistent with our ME findings. The 3M only

data forecasts tended to perform better with respect to extreme values than

the alternative data forecasts. Remember, the mean and standard deviation are

influenced by extreme values; the quartiles and medians are nec.

For Exponential Smoothing using the TRF as a starting Vint oroduced more

accurate forcasts than using an average data starting point. The TRF starting

point using alternative data with a smoothing weight of .2 tended to be the

most accurate of the forecast methods (with respect to the magnitude of the

errors). All the Exponential Smoothing methods performed better with respect

to accuracy for the readiness contributors than all items.

d. Overall Performance. To determine the best forecast with

respect to stability, bias and extremes, and magnitude of errors, we totaled

the ranks across each category. The rank sums are displayed in TABLE XVIII

for the readiness contributors and TABLE XIX fcr all items. Based on the

total ranks, Exponential Smoothing with a data windsorizing system, a smooth-

ing weight of .4, an average data starting point, and alternative data sources

when 3M data is unavailable, provides the best forecast for readiness contri-

butors. For all items, it is the second best alternative, but only by one

rank (the difference between the best and second best alternative methods for

all items is the smoothing weight).

46



TABLE XVIII

FINDINGS

READINESS CONTRIBUTORS ONLY (91,543)
GRAND TOTAL RANKS

TOTAL RANKS

STABILITY ME MSE TOTAL

BAYES ALT DATA 30 37 44.5 111.5
BAYES 3M ONLY 33.5 43 50 126.5
RATIO 3M ONLY 39 34.5 46 119.5
EXPONENTIAL SMOOTHING:
ALT DATA:

= .2 DATA ST PT 11 23.5 27 61.5
= .4 DATA ST PT 13 16 22 51
=.2 TRF ST PT 36 24 15 75
- .4 TRF ST PT 36.5 15.5 17.5 69.5

3M ONLY:

a - .2 DATA ST PT 21 34 40 95
a - .4 DATA ST PT 23 33 32.5 88.5
a - .2 TRF ST PT 40 37.5 28 105.5
a- .4 TRF ST PT 37 32 17.5 86.5

*BENCHMARK 41.5 19 29.5 90.0

*NOTE: BENCHMARK RANKS ONLY DENOTE RANKING RELATIVE TO ALTERNATIVE
FORECASTS
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TABLE XIX

FINDINGS

ALL ITEMS (128,215)
GRAND TOTAL RANKS

TOTAL RANKS

STABILITY ME MSE TOTAL

BAYES ALT DATA 33.5 27 26.5 87
BAYES 3M ONLY 32 24 32 88
RATIO 3M ONLY 40.5 27 39 106.5
EXPONENTIAL SMOOTHING:

ALT DATA:

= .2 DAtA ST PT 12 27.5 30.5 70
a = .4 DATA ST PT 15 29.5 26.5 71

.2 TRF ST PT 38 39.5 20.5 98
= .4 TRF ST PT 37.5 34.5 21.5 93.5

3M ONLY:

- .2 DATA ST PT 19.5 21.5 43 84
a - .4 DATA ST PT 22.5 28.5 37.5 88.5
a - .2 TRF ST PT 41 38.5 31.5 ill
a .4 TRF ST PT 38.5 32.5 21.5 92.5

*BENCHMARK 44 24 30 98

*NOTE: BENCHMARK RANKS ONLY DENOTE RANKING RELATIVE TO ALTERNATIVE

FORECASTS

Therefore, we conclude that Exponential Smoothing with a data windsorizing

system, alternative data when 3M data is unavailable, an average data starting

point, and a .4 smoothing weight is the best alternative with respect to sta-

bility, accuracy with respect to bias and extremes, and the magnitude of

errors. That is not to say it is the most stable or accurate of all the al-

ternatives, but that method provides the best combination of stability and

accuracy.

We also looked at the impact on two equipments (the engine and PHAIANX)
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using the same performance measurements. The detailed ;tatistics for the

equipments are found in APPENDIX E. The results are vely close across the al-

ternatives for both equipments. The proposed method provided slightly better

results with respect to stability and accuracy for the engine. The PHALANX

results were inconclusive.

Since Depot Level Repairable (DLR) items constitute the major portion of

the COSAL cost, we looked at the performance measurements with respect to

these items. The grand total ranks are displayed in TABLE XX. Again, the

proposed method provided the best results with respect to stability, bias and

extremes, and accuracy. The methods available under resystemization (the

current and Ratio methods) performed the worst.

TABLE XX

DLR ITEMS (6,605)
GRAND TOTAL RANKS

TOTAL RANKS

STABILITY ME MSE TOTAL

BAYES ALT DATA 25 39.5 36.5 101
BAYES 3M ONLY 27 34.5 41 102.5
RATIO 42 23 49 114
EXPONENTIAL SMOOTHING:
ALT DATA:

a - .2 DATA ST PT 21 26 31.5 78.5
a - .4 DATA ST PT 24 19.5 28.5 72
a- .2 TRF ST PT 33.5 19.5 22 75
a- .4 TRF ST PT 34.5 22.5 18 75

3M ONLY:

a - .2 DATA ST PT 25 30 31.5 86.5
a - .4 DATA ST PT 24 34 28 86
a- .2 TRF ST PT 34.5 41 21 96.5
a- .4 TRF ST PT 34.5 41 18 93.5

*BENCHMARK 42.5 31 35 108.5

*NOTE: BENCHMARK RANKS ONLY DENOTE RANKING RELATIVE TO ALTERNATIVE FORECASTS
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3. Impact of the Proposed Change. The impact of implementing the

recommended forecasting method was measured in terms of COSAL cost and effec-

tiveness. Measuring the impact was restricted due to the following limita-

tions. First, we do not know the items' TRFs. To determine the best fore-

casting method, we used items with less than 10 years of BRF history. There-

fore, we felt confident that an item's first BRF was its TRF. In this impact

analysis, the item can have more than 10 years of history. The first BRF is

not necessarily the TRF. In thore cases, the TRF is now smoothed out and the

transitioning effect is lost. However, we have no choice but to treat an

item's first BRF as the TRF. Secondly, little data was available to measure

COSAL effectiveness over time. The COSAL candidate files were as of July

1988; consequently, little subsequent demand data was available. Therefore,

we could not determine the impact of long term vs short term benefits, especi-

ally with respect to COSAL stability. Furthermore, with a small number of

item demands, one or two demands can distort the effectiveness statistics.

The relevant COSAL statistics for the six ships are displayed in TABLEs

XXI through XXIII. The Benchmark (BM) is the current method. As in the

previous section, we computed the Benchmark with the same data (TRF and usage

rates) as the alternative. Manual changes, ordnance freezes, and overrides

are removed. Therefore, we can compare methods. The system BRF (SYS) is the

one on file. This includes manual changes, ordnance freezes, and overrides,

and it may be computed with data not on the history file. The proposed method

(Exponential Smoothing with a data windsorizing system, a smoothing weight of

.4, alternative data when 3M data is unavailable, and an average data starting

point) is the alternative (ALT). Range and cost statistics are displayed in

TABLE XXI. The effectiveness statistics for all items are displayed in TABLE
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XXII and for the readiness contributors in TABLE XXIII. Generally, the cost

is about the same with the alternative as the Benchmark, while requisition

effectiveness for readiness contributors decreased by 0.0 to 2.8 percentage

points across the test ships. Remember, however, that these effectiveness

numbers only represent a handful of demands. With the alternative, there is 3

slight (3%) decrease in range. Both the Benchmark and the alternative have

less range and effectiveness than the system file BRF.

4. Conclusions - BRF Improvement. We found that Exponential Smooth-

ing with a data windsorizing system, a smoothing weight of .4, alternative

data sources when 3M data is unavailable, and an average data starting point

provides the best forecast in terms of stability, accuracy with respect to

bias and extremes, and magnitude of the errors. This finding was consistent

for all items and the readiness contributors. These rates resulted in test

COSALs with 3% less range, the same cost, and reduced effectiveness 0.0 to

2.8 percentage points for readiness contributors. These COSAL statistics are

inconclusive since we had limited data and only a few items had demand. Fur-

thermore, we do not know what manual overrides might be forced on the proposed

method.
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IV. CONCLUSIONS

BRF instability and churn are primarily related to the subjective portion

of the forecast (TRFs, ordnance freezes, manual changes and overrides). Eli-

minating the TRF, ordnance freezes, manual changes and overrides from the

forecast produced more stable forecasts that trended close to the actual 3M

average usage rates computed from all available data.

The proposed alternative BRF computation (Exponential Smoothing with a

data windsorizing system, a smoothing weight of .4, alternative data sources

when 3M data was unavailable, and an average data starting point) provides the

best forecast in terms of stability, accuracy with respect to bias and ex-

tremes, and the magnitude of the errors. These results were generally consis-

tent for all items and the readiness contributors. Although the proposed com-

putation appears to slightly reduce COSAL range and effectiveness, we believe

the improved stability and accuracy will provide long term benefits in reduced

COSAL churn which tends to create long supply and/or outfitting deficiencies.

V. RECOMMENDATION

We recommend using the exponential probability distribution to adjust the

TRF during the development period. After the development period, coiilpute tho

BRF using the Exponential Smoothing method with a smoothing weight of .4, a

data windsorizing system to handle extremes, an average data starting point,

and alternative data when 3M data is unavailable.
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APPENDIX B: FORECAST METHODS

The following paragraphs describe the four forecast methods discussed ill

this study (Current Method, Ratio Method, Bayes Method, and Exponenitial

Smoothing using the exponential probability distribution to adjust the Tech-

nical Replacement Forecast (TRF) during the development period and a data

windsorizing system) and show examples of each.

1. Current Method (Benchmark).

The current method has a two year development period. That is, the

TRF is used as the forecast until over two full years of observed usage is

available. (The development period is a parameter.) For the third forecast

of the Best Replacement Factor (BRF), the usage rate is smoothed into lie 'TI4'

with a .4 smoothing weight. The preferred data source is Navy Maintenarico and

Material Management (3M); but if 3M data is unavailable, then Mobile Logistics

Support Force (MLSF) data is used. When both 3M and MLSF data are unavail-

able, system data is used. If no data is available, the BRF is not updated.

Year I & 2: BRF1 = BRF2 = TRF

Year 3: BRF3 = a X2 + (1-a) TRF

Year 4: BRF 4 = a X3 + (1-a) BRF3

Year T+l: BRFT+1 = a XT + (1-a) BRFT

where

XT - the usage rate for the Tth period (demand for the Tth period divided

by average population for the Tth period
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2. Ratio Method.

The Ratio Method has at least a two year development period; that is,

the first two BRFs are the TRF. The development period continues if the item

neither had two demands nor expected to see two demands by this point in time.

When two demands have been observed, then the BRF becomes the sum of the de-

mands divided by the sum of the population. If two demands have not been ob-

served, but have been expected, the BRF becomes the inverse of the sum of

population. This method presently uses only 3M data (but could be modified to

consider other data).

Year 1 & 2: BRFI = BRF 2 = TRF

Thereafter:

T
If cumulative demand is two or greater, i.e., S Di > 2,

i=l

T
ZD i
i=l

then BRFT+1 = T

E Pi

i=l

If cumulative demand is less than two, but expected cumulative demand is

T T
two or greater; i.e., Z Di < 2 and TRF E Pj > 2,

I

then BRFT+1  -- --

z P1

otherwise, BRFT+1 - BRFT.
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where

Di - 3M demand for the ith year

Pi - average 3M population for the ith year

3. Bayes Method.

Bayesian forecasts update a subjective forecast with objective data.

There is no development period.

Di  + 1

BRFT+1 = - ]
E Pi +--

where

Di = demand for the i h year

Pi = average population for the ith year

4. Exponential Smoothing using the Exponential Probability Distribution

to Adjust the TRF during the Development Period and a Data Windsorizing Sys-

tem.

Here, the demand development period is again a parameter. For this

study, we will use the three year development period proposed for Resvstcmwizi-

tion. During that time, we will adjust the TRF using the exponential probabi-

lity distribution. We compare the actual usage rate to that expected based oil

the TRF. If the actual usage rate is within user estahlished cont rol bands:.

the TRF remains unchanged. If the actual usage rate is outit:ide onle of Ile,;r

bands, the TRF is set to the applicable bound.

For the exponential distribution:

F(X) = e BRFi
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where

F(X) - the reverse cumulative distribution

e - the natural log

X i = the usage rate

For F(X), we chose an upper bound of .95 and a lower bound of .5. There-

fore,

-BRF i
F(X) = .95 = 1- e Max XK = BRFi * 3

- BRF

F(X) = .50 = - e i Min Xi = BRFi * .7

The BRF is then computed as follows:

Year 1: BRF, = TRF

Thereafter:

If BRF1 * .7 < X, < BRF1 * 3, then BRF2 = BRF1 .

If X, > BRF1 * 3, then BRF2 = BRF1 * 3.

If X1 < BRF, * .7, then BRF2 = BRF, * .7.

BRF3 and BRF 4 are computed the same way as BRF2 using the appropriate usage

rate (X2 and X3) and BRF (BRF2 and BRF 3). The idea here is that we treat the

TRF as a reasonable estimate of the usage rate as long as we observe usage

rates that we would expect based on that estimate. However, we are not com-

pletely sure of our data. Therefore, we will adjust our TRF to a reasonable

bound when the observations are outside the bounds. After four years, we

should have developed a reliable source of history. Therefore, if we have

observed four years of usage rates, we will switch to Exponential Smoothing.

Otherwise, we will continue to adjust the BRF as for the first four forecasts

until we observe four consecutive years of usage rates (i.e., four consecutive
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years of population greater than 0 indicating there was a potential for

demand; the demand observation could be 0). There are two Atcratives for

starting points. One, we can average the first three years of usage rates and1([

smooth in the fourth years usage rate. Two, we can use the adjusted TRF.

* Average Data.

E Xi
BRF 5 = aX4 + (1-) i=1

3

* Adjusted TRF.

BRF5 = aX4 + (1-a)[aX3 + (l-a)(aX2 + (I-a)(aXl + (1-a) BRF 4))]

Now that we have developed a history of usage rates, we can define what is a

distorted observation. Observations that are distorted can be "windsorized"

using the exponential distribution. That is, we do not allow abnormally sinn]l

or large values to distort the forecast. Abnormal values are based upon past

observations.

For i > 5, when i - 1, 2, 3, ... T:

If Xi > BRFi * 3, then we set Xi =BRFi *3.

If X i < BRF i * .7, then we set X= BRF,* .7.

5. Examples.

a. Example 1. For this example, we will assume the data is all 3M,

the TRF is .1, and the smoothing weight is .4. The following table demonstra-

tes how the alternate methods forecast usage rates for an item with zero ob-

served usage.
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EX SMOOTHING/ EX SMOOTHING/
YEAR Di  Pi Xi BENCHMARK RATIO BAYES AVG DATA ADJUSTED TRF

1 0 100 0 .1 .1 .1 .1 .1

2 0 100 0 .1 .1 .009 .07 .07

3 0 100 0 .06 .005 .005 .049 .049

4 0 100 0 .036 .003 .003 .034 .034

5 0 100 0 .022 .002 .002 0 .004
6 0 100 0 .013 .002 .002 0 .004

7 0 100 0 .008 .001 .002 0 .003
8 0 100 0 .005 .001 .002 0 .003
9 0 100 0 .003 .001 .001 0 .003

10 0 100 0 .002 .001 .001 0 .002
11 0 100 0 .001 .001 .001 0 .001

Note that the average data starting point forecast is the only one that reach-

es zero. The others only approach zero.

b. Example 2. For this example, we will assume the data is all 3M,

the TRF is 2, and the smoothing weight for the average data starting point is

.4 and .2 for the adjusted TRF starting point. The following table demonstra-

tes how the alternatives forecast items with demand in every year, including

one year (year 6) with obvious extreme values.

BEX SMOOTHING/ EX SMOOTHING/

YEAR DiI Pi Xi BENCHMARK RATIO BAYES AVG DATA ADJUSTED TRF

1 10 1 10 2 2 2 2 2
2 12 2 6 2 2 7.3 6 6
3 10 2 5 3.6 7.3 6.6 6 6

4 9 3 3 4.2 6.4 6.0 6 6
5 15 5 3 3.7 5.1 4.9 5.4 5.6
6 100 2 50 3.4 5.1 4.2 4.8 5.3

7 10 2 5 22.0 12 10.1 8.6 7.4
8 11 1 11 15.2 11.1 9.5 7.6 7.0

9 12 2 6 13.5 11.1 9.6 9.0 7.8
10 10 5 5 10.5 10.5 9.3 7.9 7.4

11 9 3 3 7.1 8.7 7.8 7.0 7.0

The average data starting point and adjusted TRF starting point forecasts do

not react as strongly to the extreme usage rate value of 50 in year 6.
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APPENDIX C: FORECAST WEIGHTS

In this section we develop mathematically the weights for more recent ob-

servations versus older observations.

1. Exponential Smoothing.

BRFT 1 = X

BRFT+2 -= aXT 1 + (1-a) BRFT+ 1 = aXT+i + ('-a) XT

BRFT+3 = QXT+ 2 + ('-a) BRFT+2 = aXT* 2 + (1-a) aXT+1 + (1-a) 2 XT

BRFT+4  aXT+3 + (1-a) BRFT+ 3 = aXT+3 + (1-a) aXT+2 + (1-) 2 
CXT+l + (1-) 3 XT

BRFT+N =XT N_1 + ('-a) BRFT+_N1 =

rXT+N_1 + (1-) QXT+N-2 + (l-a) 2 aXT+N_3 + ... + (l-)N 1- XT

where

BRFT = the forecast for the Tth period, T = 1, 2, 3, ... T

XT the usage rate (or TRF) for the Tth period

a= smoothing weight

2. Ratio Method.

T
Z. Di
i=1 D D _+D,/ + D,_+ ... D

BRFT T T
F Pj 71 P

I=1 i=1

1 1 1 1
T - (D1 ) + ----- (D 2 ) + ---- (D 3 ) + "'" + - (DT)

E Pi E Pi E Pi E Pi
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D _ 1 (DI) +- (DO) + PD 3  .
PID1  T P2D2  T P3D- (l) *..

Z Pi Z Pi >1 Pi
i=1 i=1 i=1

PTDT T (DT)

- Pj
i=1

Substituting Xi for D1/P1 (the usage rate) and simplifying yields:

BRFTI = __P1__ (X 1 ) + (X 2 ) + ---- (X 3 ) + + T
T T

Z Pi Z Pi Z Pi Z Pi
i=1 i=l i=1 1=1

where

BRFT = the forecast for the Tth period, T = 1, 2, 3, T

DT = the 3M demand for the Tth period

PT = the average 3M population for the Tth period

If the population sizes are constant, then Pi = P2 = P3 = =PT

BF =PPP P

BRFT+= P- (X) + (x 2 ) (x) + .. + (x)TP T P(3+''+ XT

I ~(X1 )+ -(X?) ++ (
T +( 3) + +XMr)

If the population sizes double each year, then

2 T = 2 T2p = 2 TP3 =2PT-1 = PT

PL_ PI P 2T-I ( )

BRFT+1  -1 (X1) + (X 2) + T-1 (X3 ) + ' + T(T
X 2'P1 X] 2'P, 2Pip Z 2-P,

i=0 i=O 1=0 i=0
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1 2 4 27 -1
(Xi) + ---- (X2 ) + -I (X3) +  2 T-1 (XT)S2 T 2- 1 2 1 T-

i=0 i=0 i=O i=0

If the population sizes halve each year, then

P1 = 2P 2 = 2 2 P 3 = ... = 2T-PT =T-P T

2 T-1p, 2T-2P 
2 T-3p1 P1

BRFT+1 T-1 (X1) +  (X2) (X3 ) +  T-1 (XT)7" 2'i Z 2%p Z 2'P1 . 2PIp

i=0 i=0 i=0 i=0

2"T-1 2T-2 2 T-3 1T-I (X 1 ) + T-1I (X 2 ) + T-I (x 3 ) + " + 1 (XT)

Z 2' Z 2i  7 2' Z 2
i=0 i=0 i=0 i=0

3. Bayes Method.

Z rR Z Pi + ---

lil I TFi=l TRF

T T
1 1

----- (D 1 ) +- ------ --------.

l TRF J

1 1
-(D T) +

Z TR+.F ZPi +-
SCl 0 ] R1
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- 1D1P 1 (D1 ) + I ---- 1--- (DO + . +
IPiDj I p+ P2D2  T i

E P +1 P1 +
) + TR1

DT)T + T. 1
TPDT "PT +  TRF T I

7Pi+ + E-
i~l i=1

Substituting Xi for Di/P i (the usage rate) and simplifying yields:

P1  P2
BRFTI -- T (XI) + - - ------------ (X 2 ) + "'" +

T T 1

i iTRF iiTRF

PTI

S(X T ) + - -------- (TRF)

ilTRF TRF +P I
{i~l i)+ 1

where

BRFT = the forecast for the Tth period, T = 1, 2, 3, ... T

DT = the demand for the Tth period

PT = the average population for the Tt h period

TRF = the technical replacement factor

NOTE: The Bayes Method is similar to the Ratio Method. There are two

additional terms. One is in the denominator of the usage rate

weights . The other is the last term (TRF) ]
TRC F P I
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Consequently, changes in population size will effect the Bayes

Method the same as the Ratio Method. The difference between the

two methods is related to the TRF. Small values for the TRF will

add a large constant to the denominator of the usage rate weights

and decrease the TRF denominator weight. Therefore, more weight

will be placed on the TRF than on the usage rates. Large values

for the TRF will have an opposite effect.
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APPENDIX D: STATISTICAL TESTS

The following paragraphs describe the statistical tests used in this

study:

1. MEAN. The mean is used to measure the central tendency of a popula-

tion or a data set.

N
z x

-= i=l

N

M
E Yj

-= i=l

- M

where

X the average for population/sample/variable one

Xi  the ith observation for the first population/sample/variable

N the number of observations for the first population/sample/variable

Y- the average for population/sample/variable two

Y= the ith observation for the second population/sample/variable

M - the number of observations for the second population/.aiinple'vari.hlc

2. VARIANCE. Tie variance and standard (leviation me;Isurk' 1,ow a pol1,, -

tion or data set is dispersed around its ineanz.

N
S2 E l z (xi -x) 2

N-I

M

s2j E (Yi- Y)2
M-1
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where

S- the variance for the first population/sample/variable

- the variance for the second population/sample/variable

3. STANDARD DEVIATION. The standard deviation is the square root of the

Variance.

4. F-TEST: The F test is used to determine whether or not the variance

of two populations are the same. F is the ratio of two unknown variances from

two independent normal population/samples.

s2

If P(FWIjI) > a/2, then S2 > S2.

If P(F._I.UI) < l-a/2, then S2 < S2.

If l-a/2 < P(FNIMI) < a/2, then S2 = S

where

P(FN_1,M_1) = the probability of observing an F statistic with N-1 de-

grees of freedom in the numerator and M-1 degrees of

freedom in the denominator

a - the level of significance

5. t-TEST FOR UNEQUAL MEANS:

This test is used here to determine if two populations have different

means.
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t x -y
t +

Degrees of freedom (d.f.) = [SIN + SI/MI/[(S?/N)2/(N-l) + (S2/M)2/(M_I)I

If t > t.12 d.f., then X > Y.

If t < -t,/ 2 d.f., then X < Y.

If -ta/ 2 d.f. < t < ta,2 d.f., then X=Y.

6. PEARSON'S CORRELATION COEFFICIENT (r). Pearson's correlation co-

efficient (r) is used to measure the linear relationship between two vari-

ables.

r = 1 indicates a positive/upward linear trend

r - -1 indicates a negative/downward linear trend

r - 0 indicates no linear trend

where

N
E (XI - X) (Y, -Y)
i=l

r ---- --------------

M and N are assumed equal

If r > t ,2,N2, then r = 1.

If r < -t,,/2,N_2, th-n r =-1.

If -t/2,N 2 < r < t=/2,N. 2 , then r - 0

whe re

(N-2)'r
tN-22)1

(l-r 2 )
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APPENDIX E: EQUIPMENT ANALYSIS

We analyzed the impact of alternative methods on an engine and the P1tALANiX

weapon system. Since the performance measurements are only useful for con-

parisons, we used the four best alternatives for all items:

* Bayes using alternative data sources when 3M is unavailable.

* Bayes using 3M data only.

* Exponential Smoothing using alternative data when 3M is unavailable and

an average data starting point, and smoothing weights of

a0 = .2

00 a = .4

The methods available under Resystemization (the Current Method and the

Ratio Method) were also evaluated.

The performance measurements for the engine are displayed in TABLE I and

for the PHALANX in TABLE 2. The results are very close for the four alterna-

tives for both equipments. All four alternatives tend to generate slightly

better performance than the methods available under Resystemization (the Cur-

rent Method and the Ratio Method). For the engine, the results are consistent

with those in the main report. The proposed method generally provides the

best results in terms of stability and accuracy, but not as well in handling

extremes. For the PHALANX data, the results are inconclusive.
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TABLE I

SELECTED EQUIPMENT

ENGINE - 1,589 ITEMS
APL # L665360264

BAYES BAYES EXPONENTIAL EXPONENTIAL CURRENT
ALT DATA 3M ONLY a = .2 a = .4 RATIO SYSTEM

# ITEMS AL- 130 123 117 119 107 106
WAYS W/I
LIMITS

MEAN 3.6 3.6 2.7 2.7 3.6 3.7
STABILITY MEDIAN 4 4 3 3 4 4

MODE 4 4 3 3 4 4
% MODE 81 81 88 88 81 81
STD 1.3 1.3 0.8 0.8 1.2 1.0

MEAN .0137 .0006 -.0079 .0085 .0148 -.011
MEDIAN -.0039 -.0096 -.0046 -.0046 .011 -.0088

ME MAX 10.8 10.9 12.1 11.2 2.3 6.7
MIN -1.5 -1.5 -3.0 -2.0 -9.2 -1.6
STD 0.4 0.4 0.4 0.4 0.3 0.2

MEAN 1.0 1.0 1.0 1.0 1.2 1.3
MEDIAN .00002 .0001 .00003 .00003 .0002 .00011

MSE UP QUARTILE .0002 .0008 .0003 .0003 .001 .0008
LR QUARTILE .000005 .000024 .0000045 .0000045 .000025 .000017
STD 30.9 30.9 30.3 30.2 32.9 41.1
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TABLE 2

SELECTED EQUIPMENT

PHALANX - 12,727 ITEMS
APL # 006090052

BAYES BAYES EXPONENTIAL EXPONENTIAL CURRENT
ALT DATA 3M ONLY a = .2 -- .4 RATIO SYSTEM

# ITEMS AL- 1,380 1,354 1,339 1,327 1,010 8
WAYS W/I
LIMITS

MEAN 1.9 1.9 1.7 1.7 2.0 2.9
STABILITY MEDIAN 0 1 1 1 1 2

MODE 0 0 0 0 0 1
% MODE 51 50 49 49 37 40
STD 2.4 2.4 2.0 1.9 2.2 2.2

MEAN 0.8 0.9 1.1 1.1 -0.8 0.6
MEDIAN .0003 .0005 .0002 .0002 .0006 .00004

ME MAX 2,177.4 2,374.9 3,206.0 3,233.0 15.5 1,799.8
MIN -21.5 -26.9 -143.7 -104.3 2,074.5 -138.4
STD 41.7 45.4 61.5 62.0 39.7 34.6

MEAN 30,201.6 29,479.1 28,209.1 28,299.5 30,584.6 36,052.,
MEDIAN .000089 .000085 .00011 .00011 00012 .00011

MSE UP QUARTILE .0019 .0018 .0022 .0022 .0023 .0021
LR QUARTILE .0000025 .0000025 .0000031 .000003 .000000014 .0000029
STD 1,576,497 1,538,795 1,471,124 1,476,455 1,596,397 1,881,857
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